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■ Nonlinear dynamical systems can shape complex spatiotemporal structures.

▫ Their sensitivity to initial conditions make possible the exponential growth of 

small fluctuations, switching from a stable to an unstable regime.

▫ Limit cycles, attractors, … maintain the instability along time.

1. Emergence of order from disorder

A) Stable configuration       Oscillatory behavior

[classic predator-prey].

B) Stable configuration       Emergence of spatial patterns

[Turing instability].

C) Stable configuration       Spatiotemporal, evolving patterns

[traveling waves].

■ Generally, one can consider the following scenarios:



2. Patterns in Nature
■ Convection, chemical reactions,… may generate regular patterns. They have

challenged or understanding of Nature for millennia!

Convection on a free surface

(silicone oil + aluminum powder at 300 ºC)

Can be carried out – carefully-- at home

Petrified convection (hexagons) in a volcano

numerical simulation



2. Patterns in Nature
■ All kind of animals show patterning in their shells / wings / skin:





3. Alan Turing’s brightest idea

■ Alan Turing showed in 1952 that a system that is stable 

without diffusion can become unstable with diffusion

(and generate patterns).

Challenges intuition! Diffusion has been classically seen as stabilizing force.

Watch out: nonlinear systems challenge intuition!

■ In 1980 the first experimental (laboratory) evidence for Turing patterns was 

observed. It is knows as Belousov-Zhabotinsky reaction.

■ From 1990 onwards, several new lab-made patterns have been achieved!

(+ diffusion over space)

(Each specie, a color spot in the experiment)



3. Alan Turing’s brightest idea

■ Several systems have been explored numerically and analytically, but 

there are very few experiments.

■ Small fluctuations in the environment suffice to amplify the

Typical Turing pattern: periodic spots.

FitzHugh-Nagumo based system.

initial concentrations of species {u,v} and trigger a pattern.

u
v



4. Analyzing the generation of patterns in a dynamical system

■ Conceptual development:

A) Get the equations.

B) Exclude diffusion, analyze nullclines and equilibrium points.

C) Analyze stability of the system. Stable? Turing condition I.

Unstable? Other features. 

D) Include diffusion. Stable? No pattern.

Unstable? Turing condition II. Pattern generated!

U

V



5. Stability or instability without diffusion

■ Mathematical conditions for stability of the system without diffusion:

▫ Consider a linear stability analysis, and compute the linearized matrix:

▫ For stability of the system at (U0, V0), matrix A should obey:

■ Additionally, quantify the behavior far from equilibrium by solving:

U

V

eigenvalues
Identity matrix

unstable

stable

non-oscillatory

oscillatory



5. Stability or instability without diffusion

■ Example 1: Lotka-Volterra (predator-prey) model

▫ Matrix A leads to:

parameters

nullclines U

V

< 0? No

> 0? Yes

Both conditions are required          Unstable w/o diffusion.

OSCILLATORY!

predator

prey



5. Stability or instability without diffusion

■ Example 2: Modified Lotka-Volterra with logistic growth:

▫ Logistic growth adds realism to the model, so that the prey do not grow exponential in 

the absence of predators.

▫ The model leads to:

▫ Linear stability analysis shows that depending on parameters the stable point can lead 

to oscillations:

U

V

nullclines

stable without diffusion!



5. Stability or instability with diffusion.

■ For the system that verifies…

... then a Turing pattern will emerge if: 

▫ These conditions are sufficient to generate a pattern, but the structure of the pattern 

will depend on the model parameters. 

Note: these conditions are derived by analyzing a solution for a spatial wave of the form:

and on the equation:

Not easy at all!
(with proper boundary conditions) 

R

steady state



5. Stability or instability with diffusion.

■ Example 3: It is not easy to find simple models that verify these conditions.

▫ For the Lotka-Volterra with logistic growth, already the first one fails!

■ Given the difficulty, it took years to develop experiments that exhibited Turing 

patterns, but scientists quickly guessed that Turing mechanisms could naturally 

emerge in biological systems. Their intrinsic stochasticity and quick switching 

of equations’ parameters could provide the environment for pattern generation. 

Hence, this model can exhibit instabilities and oscillations, but not Turing patterns!

Gierer-Meinhardt model in 1972

(foot-head polarity in metazoans)



5. Stability or instability with diffusion.

■ Example 4: Gierer-Meihardt model for animal development.

Animals at the embryonic stage use signaling molecules to direct development. A crucial 

aspect to comprehend development is deriving a model that leads to stable patterns 

(spinal cord, fingers, foot-head polarity…)

▫ Equations can be made more compact by writing dimensionless versions, and in turn 

considering the ratio of diffusion coefficients rather than their value. 

Biological context: Lecture 8

(activator)

(inhibitor)

nullclines V-nullcline

u-nullcline



5. Stability or instability with diffusion.

▫ The analysis without diffusion provides:

▫ In the presence of diffusion, the conditions

for a Turing pattern can be written as:

▫ These conditions are satisfied for:

tr(A)<0 and det(A)>0 satisfied if: 

det(A)

d >>



5. Stability or instability with diffusion.

▫ The analysis without diffusion provides:

▫ In the presence of diffusion, the conditions

for a Turing pattern can be written as:

▫ These conditions are satisfied for:

tr(A)<0 and det(A)>0 satisfied if: 

det(A)

(1)

(2)

d >>

(3)

In order for (1) and (2) to be 

satisfied, d has to be very large, 

i.e. Dv >> Du.

Inhibitor v: fast diffusion (long range)

Activator u: slow diffusion (short range)



5. Stability or instability with diffusion.

▫ Gierer-Meinhardt simulations:

- Zero-flux boundary conditions.

- A system with a polarity (pattern) stablished is destroy. System’s 

fluctuations restore it

foot-head polarity

Inhibitor v

activator u 
Matlab exercise!

X 

time  

Small initial fluctuations grow

u



5. Stability or instability with diffusion.

no pattern

kinds of pattern

■ Example 5: Predator-prey with Turing instability.

(try to analyze it as exercise)

▫ Turing patterns are particularly sensitive

to a and d.

(logistic growth is very important!)

prey

predat.



6. On the boundary conditions

■ In general, the evolution of Turing patterns and their structure may depend on 

the boundary conditions of the system.

■ One may consider the following cases:

▫ A) PERIODIC 

(surface of a sphere, shells…) 

a

a

bb

0          L          2L

u (t, 0) = u (t, L)

0          L          2L

u (t, 0) = u (t, L) = 0

▫ B) DIRICHLET

(no substances

at the borders)

▫ B) NEWMAN

(zero flux)

0          L          2L

du 
dx

0

du 
dx

L

=           =  0



7. Richness of patterns

■ Dependence of the pattern structure on parameters occurs often, and allows 

for an understanding of natural diversity, e.g. through the Brusselator model.

critical value for Turing



7. Richness of patterns

■ A system may exhibit different patterns depending on changes in the 

parameters, e.g. the Brusselator model:



8. Final remarks

■ Turing patterns are a relatively young research field. For realistic systems, the 

complete understanding of the patterns that a system may generate is difficult 

to determine, and may take years of analysis, calculations and simulations.

■ Current research investigates some of the following topics:

▫ Coupled Turing systems, i.e. those in 

which a reaction occurs within another 

reaction.  

▫ Patterns that evolve in time, e.g. 

travelling waves or other structures, to 

simulate heart dynamics.

▫ Systems where the ‘substrate’ 

over which diffusion occurs is 

anisotropic or changes in time.

▫ Diffusion across a network, e.g.

activity in a neuronal network. 



End of lecture 3



Questions and discussion aspects:

- Turing patterns need fluctuations to start, but must be robust 

against fluctuations. How do you solve this apparent 

contradiction?

- How do you think Turing patterns can change our understating 

of ecology and environment?

TAKE HOME MESSAGE:

- Turing patterns: stable without diffusion; unstable with diffusion.

- Turing patterns are a fundamental tool to understand natural behavior, 

from predator-prey to skin pigmentation.
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